Basic configuration examples
The following examples provide some typical configurations for enabling
the ai-semantic-cache
plugin on a
service.
Make the following request:
curl -X POST http://localhost:8001/services/{serviceName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-cache",
"config": {
"embeddings": {
"model": {
"provider": "openai",
"name": "text-embedding-3-large"
}
},
"vectordb": {
"strategy": "redis",
"dimensions": 3072,
"threshold": 0.1,
"distance_metric": "cosine",
"redis": {
"host": "exampleredis.com",
"port": 80
}
}
}
}
'
Replace SERVICE_NAME|ID
with the id
or name
of the service that this plugin configuration will target.
Make the following request, substituting your own access token, region, control plane ID, and service ID:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/services/{serviceId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-cache","config":{"embeddings":{"model":{"provider":"openai","name":"text-embedding-3-large"}},"vectordb":{"strategy":"redis","dimensions":3072,"threshold":0.1,"distance_metric":"cosine","redis":{"host":"exampleredis.com","port":80}}}}'
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
First, create a KongPlugin resource:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-cache-example
plugin: ai-semantic-cache
config:
embeddings:
model:
provider: openai
name: text-embedding-3-large
vectordb:
strategy: redis
dimensions: 3072
threshold: 0.1
distance_metric: cosine
redis:
host: exampleredis.com
port: 80
" | kubectl apply -f -
Next, apply the KongPlugin
resource to an ingress by annotating the service
as follows:
kubectl annotate service SERVICE_NAME konghq.com/plugins=ai-semantic-cache-example
Replace SERVICE_NAME
with the name of the service that this plugin configuration will target.
You can see your available ingresses by running kubectl get service
.
Note: The KongPlugin resource only needs to be defined once and can be applied to any service, consumer, or route in the namespace. If you want the plugin to be available cluster-wide, create the resource as aKongClusterPlugin
instead ofKongPlugin
.
Add this section to your declarative configuration file:
plugins:
- name: ai-semantic-cache
service: SERVICE_NAME|ID
config:
embeddings:
model:
provider: openai
name: text-embedding-3-large
vectordb:
strategy: redis
dimensions: 3072
threshold: 0.1
distance_metric: cosine
redis:
host: exampleredis.com
port: 80
Replace SERVICE_NAME|ID
with the id
or name
of the service that this plugin configuration will target.
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_cache" "my_ai_semantic_cache" {
enabled = true
config = {
embeddings = {
model = {
provider = "openai"
name = "text-embedding-3-large"
}
}
vectordb = {
strategy = "redis"
dimensions = 3072
threshold = 0.1
distance_metric = "cosine"
redis = {
host = "exampleredis.com"
port = 80
}
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
service = {
id = konnect_gateway_service.my_service.id
}
}
The following examples provide some typical configurations for enabling
the ai-semantic-cache
plugin on a
route.
Make the following request:
curl -X POST http://localhost:8001/routes/{routeName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-cache",
"config": {
"embeddings": {
"model": {
"provider": "openai",
"name": "text-embedding-3-large"
}
},
"vectordb": {
"strategy": "redis",
"dimensions": 3072,
"threshold": 0.1,
"distance_metric": "cosine",
"redis": {
"host": "exampleredis.com",
"port": 80
}
}
}
}
'
Replace ROUTE_NAME|ID
with the id
or name
of the route that this plugin configuration will target.
Make the following request, substituting your own access token, region, control plane ID, and route ID:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/routes/{routeId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-cache","config":{"embeddings":{"model":{"provider":"openai","name":"text-embedding-3-large"}},"vectordb":{"strategy":"redis","dimensions":3072,"threshold":0.1,"distance_metric":"cosine","redis":{"host":"exampleredis.com","port":80}}}}'
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
First, create a KongPlugin resource:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-cache-example
plugin: ai-semantic-cache
config:
embeddings:
model:
provider: openai
name: text-embedding-3-large
vectordb:
strategy: redis
dimensions: 3072
threshold: 0.1
distance_metric: cosine
redis:
host: exampleredis.com
port: 80
" | kubectl apply -f -
Next, apply the KongPlugin
resource to an ingress by annotating the ingress
as follows:
kubectl annotate ingress INGRESS_NAME konghq.com/plugins=ai-semantic-cache-example
Replace INGRESS_NAME
with the name of the ingress that this plugin configuration will target.
You can see your available ingresses by running kubectl get ingress
.
Note: The KongPlugin resource only needs to be defined once and can be applied to any service, consumer, or route in the namespace. If you want the plugin to be available cluster-wide, create the resource as aKongClusterPlugin
instead ofKongPlugin
.
Add this section to your declarative configuration file:
plugins:
- name: ai-semantic-cache
route: ROUTE_NAME|ID
config:
embeddings:
model:
provider: openai
name: text-embedding-3-large
vectordb:
strategy: redis
dimensions: 3072
threshold: 0.1
distance_metric: cosine
redis:
host: exampleredis.com
port: 80
Replace ROUTE_NAME|ID
with the id
or name
of the route that this plugin configuration will target.
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_cache" "my_ai_semantic_cache" {
enabled = true
config = {
embeddings = {
model = {
provider = "openai"
name = "text-embedding-3-large"
}
}
vectordb = {
strategy = "redis"
dimensions = 3072
threshold = 0.1
distance_metric = "cosine"
redis = {
host = "exampleredis.com"
port = 80
}
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
route = {
id = konnect_gateway_route.my_route.id
}
}
The following examples provide some typical configurations for enabling
the ai-semantic-cache
plugin on a
consumer.
Make the following request:
curl -X POST http://localhost:8001/consumers/{consumerName|Id}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-cache",
"config": {
"embeddings": {
"model": {
"provider": "openai",
"name": "text-embedding-3-large"
}
},
"vectordb": {
"strategy": "redis",
"dimensions": 3072,
"threshold": 0.1,
"distance_metric": "cosine",
"redis": {
"host": "exampleredis.com",
"port": 80
}
}
}
}
'
Replace CONSUMER_NAME|ID
with the id
or name
of the consumer that this plugin configuration will target.
Make the following request, substituting your own access token, region, control plane ID, and consumer ID:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/consumers/{consumerId}/plugins \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-cache","config":{"embeddings":{"model":{"provider":"openai","name":"text-embedding-3-large"}},"vectordb":{"strategy":"redis","dimensions":3072,"threshold":0.1,"distance_metric":"cosine","redis":{"host":"exampleredis.com","port":80}}}}'
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
First, create a KongPlugin resource:
echo "
apiVersion: configuration.konghq.com/v1
kind: KongPlugin
metadata:
name: ai-semantic-cache-example
plugin: ai-semantic-cache
config:
embeddings:
model:
provider: openai
name: text-embedding-3-large
vectordb:
strategy: redis
dimensions: 3072
threshold: 0.1
distance_metric: cosine
redis:
host: exampleredis.com
port: 80
" | kubectl apply -f -
Next, apply the KongPlugin
resource to an ingress by annotating the KongConsumer
object as follows:
kubectl annotate KongConsumer CONSUMER_NAME konghq.com/plugins=ai-semantic-cache-example
Replace CONSUMER_NAME
with the name of the consumer that this plugin configuration will target.
You can see your available consumers by running kubectl get KongConsumer
.
To learn more about KongConsumer
objects, see Provisioning Consumers and Credentials.
Note: The KongPlugin resource only needs to be defined once and can be applied to any service, consumer, or route in the namespace. If you want the plugin to be available cluster-wide, create the resource as aKongClusterPlugin
instead ofKongPlugin
.
Add this section to your declarative configuration file:
plugins:
- name: ai-semantic-cache
consumer: CONSUMER_NAME|ID
config:
embeddings:
model:
provider: openai
name: text-embedding-3-large
vectordb:
strategy: redis
dimensions: 3072
threshold: 0.1
distance_metric: cosine
redis:
host: exampleredis.com
port: 80
Replace CONSUMER_NAME|ID
with the id
or name
of the consumer that this plugin configuration will target.
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_cache" "my_ai_semantic_cache" {
enabled = true
config = {
embeddings = {
model = {
provider = "openai"
name = "text-embedding-3-large"
}
}
vectordb = {
strategy = "redis"
dimensions = 3072
threshold = 0.1
distance_metric = "cosine"
redis = {
host = "exampleredis.com"
port = 80
}
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
consumer = {
id = konnect_gateway_consumer.my_consumer.id
}
}
A plugin which is not associated to any service, route, consumer, or consumer group is considered global, and will be run on every request.
- In self-managed Kong Gateway Enterprise, the plugin applies to every entity in a given workspace.
- In self-managed Kong Gateway (OSS), the plugin applies to your entire environment.
- In Konnect, the plugin applies to every entity in a given control plane.
Read the Plugin Reference and the Plugin Precedence sections for more information.
The following examples provide some typical configurations for enabling
the AI Semantic Cache
plugin globally.
Make the following request:
curl -X POST http://localhost:8001/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--data '
{
"name": "ai-semantic-cache",
"config": {
"embeddings": {
"model": {
"provider": "openai",
"name": "text-embedding-3-large"
}
},
"vectordb": {
"strategy": "redis",
"dimensions": 3072,
"threshold": 0.1,
"distance_metric": "cosine",
"redis": {
"host": "exampleredis.com",
"port": 80
}
}
}
}
'
Make the following request, substituting your own access token, region, and control plane ID:
curl -X POST \
https://{us|eu}.api.konghq.com/v2/control-planes/{controlPlaneId}/core-entities/plugins/ \
--header "accept: application/json" \
--header "Content-Type: application/json" \
--header "Authorization: Bearer TOKEN" \
--data '{"name":"ai-semantic-cache","config":{"embeddings":{"model":{"provider":"openai","name":"text-embedding-3-large"}},"vectordb":{"strategy":"redis","dimensions":3072,"threshold":0.1,"distance_metric":"cosine","redis":{"host":"exampleredis.com","port":80}}}}'
See the Konnect API reference to learn about region-specific URLs and personal access tokens.
Create a KongClusterPlugin resource and label it as global:
apiVersion: configuration.konghq.com/v1
kind: KongClusterPlugin
metadata:
name: <global-ai-semantic-cache>
annotations:
kubernetes.io/ingress.class: kong
labels:
global: "true"
config:
embeddings:
model:
provider: openai
name: text-embedding-3-large
vectordb:
strategy: redis
dimensions: 3072
threshold: 0.1
distance_metric: cosine
redis:
host: exampleredis.com
port: 80
plugin: ai-semantic-cache
Add a plugins
entry in the declarative configuration file:
plugins:
- name: ai-semantic-cache
config:
embeddings:
model:
provider: openai
name: text-embedding-3-large
vectordb:
strategy: redis
dimensions: 3072
threshold: 0.1
distance_metric: cosine
redis:
host: exampleredis.com
port: 80
Prerequisite: Configure your Personal Access Token
terraform {
required_providers {
konnect = {
source = "kong/konnect"
}
}
}
provider "konnect" {
personal_access_token = "kpat_YOUR_TOKEN"
server_url = "https://us.api.konghq.com/"
}
Add the following to your Terraform configuration to create a Konnect Gateway Plugin:
resource "konnect_gateway_plugin_ai_semantic_cache" "my_ai_semantic_cache" {
enabled = true
config = {
embeddings = {
model = {
provider = "openai"
name = "text-embedding-3-large"
}
}
vectordb = {
strategy = "redis"
dimensions = 3072
threshold = 0.1
distance_metric = "cosine"
redis = {
host = "exampleredis.com"
port = 80
}
}
}
control_plane_id = konnect_gateway_control_plane.my_konnect_cp.id
}